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Memory effects in randomly perturbed systems exhibiting continuous symmetry breaking
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We studied pattern characteristics in randomly perturbed structures exhibiting continuous symmetry breaking. A
Lebwohl–Lasher-type lattice model was used which described well the onset of orientational ordering of a system
of rod-like objects. For example, such systems mimic the orientational ordering tendency in liquid crystals or in
an ensemble of nanotubes. We set impurities to impose a random anisotropy type of disorder on the objects.
Structural characteristics were studied as a function of concentration of impurities, interaction strength w
between impurities and rod-like objects, external ordering strength and history of samples. We showed that the
characteristic linear size of patterns and range of ordering strongly depend on the history of samples for weak
enough strength w. The two-dimensional and three-dimensional simulations yielded qualitatively similar results.
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1. Introduction

Domain patterns are commonly encountered in

nature. They are formed in various condensed matter

systems (e.g. in magnetic materials, liquid crystals) (1,

2), social systems and even in cosmology (1) (the

domain-type pattern in the hypothetical Higgs field in

the early universe (3)). The understanding of basic

mechanisms driving and stabilising domain patterns

is of interest in all branches of physics. Furthermore,

details of such patterns strongly influence mechan-

ical, electrical and optical (in transparent media)

properties in various condensed matter systems.

Therefore, such studies are also of great importance

for several applications.

Domain-type patterns are unavoidable in phases

or structures that are reached via a fast enough

continuous symmetry breaking phase transition (1),

and are the focus of our study. In practice such

domains are often stabilised by various impurities. In

order to illustrate basic mechanisms of domain

patterning in such systems we first consider a

temperature-driven phase transition from a para-

magnetic to a ferromagnetic phase in a pure magnetic

system. Above the phase transition temperature Tc

the system exhibits continuous orientational symme-

try (all orientations in the system are equivalent).

Below the transition temperature, a homogeneously

aligned structure along a single symmetry breaking

direction represents an equilibrium configuration.

However, in the case of a fast enough phase

transition local fluctuations nucleate spatially differ-

ent symmetry breaking directions. The resulting

orientational frustration gives rise to domain-type

ordering. Note that domains become visible (the so

called protodomains) only when the degree of

ordering is large enough. This happens roughly after

the Zurek time (1) after the phase transition

temperature was crossed. Studies in various con-

densed matter systems reveal that the size of the

protodomains strongly depends on the quench rate

tQ (1). The resulting domain pattern growth is well

characterised by a single average domain length jd (1,

2). In time, large domains grow at the expense of

smaller ones. Soon after the transition, a scaling

regime is entered in which the domain growth follows

a power law (2) jd3tc, where c is a scaling coefficient.

The presence of impurities may hinder domain

growth and stabilise the system into a domain-type

pattern. One intuitively expects that this pattern would

depend on the relative size j
protoð Þ

d of an average

protodomain and average separation of impurities. As

j
protoð Þ

d ~j
protoð Þ

d tQ

� �
we expect that kinetics significantly

influence the saturated domain pattern. However, most

studies so far in randomly perturbed systems were

carried out based on static approaches. The majority

assumed that impurities enforce a kind of quenched

random-field disorder (4–10). The pioneering work by

Imry and Ma (4) predicts the onset of a domain-type

pattern characterised by a single length jd obeying the

scaling law jd!w
{2

4{dð Þ. Here, w stands for the disorder

strength and d is the space dimensionality. The resulting

phase possesses short range order (SRO). However,

several subsequent studies suggest that the quasi long

range order (QLRO) is established (5, 6) instead.
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Lately many such studies were carried out in

various randomly perturbed liquid crystals (LCs) (7–

10). LCs (11–13) are especially adequate as a testing

system due to their softness, liquid character,

transparency and rich variety of different phases

and structures exhibiting various physical phenom-

ena. Consequently, samples can be relatively easily

prepared and experimentally probed (14). As a source

of random field-type disorder one conventionally

uses: i) various porous matrices (7) serving as a host

system for LCs; or ii) aerosol–LC mixtures (7, 15). In

the latter case, disorder is imposed via fractal-like

networks formed from aerosil particles. Lately it has

been shown (16) that nematic LC-like ordering can be

observed also in systems of nanotubes which are

promising to revolutionise future technologies.

Different structures of nanotubes, due to their

inherent geometrical anisotropic properties, can yield

remarkably different material properties.

Consequently, several recent studies (16–18) have

been devoted towards an understanding of the basic

ordering mechanisms in such systems.

The aim of this paper is to demonstrate that the

domain pattern in randomly perturbed systems

strongly depends on the history of a sample. For

this purpose we used a simple lattice model simulat-

ing an ensemble of nematic LC molecules (7) or

nanotubes (16–18), which experience the random

anisotropy field. We show that by changing the

history of samples large quantitative and even

qualitative changes could appear and that two-

dimensional and three-dimensional simulation yield

qualitatively similar results.

The plan of the paper is as follows. In Section 2, we

introduce the Lebwohl–Lasher-type lattice model that

we used. We consider the two- and three-dimensional

cases in order to test the dimensionality dependence

and robustness of results. In Section 3, we present the

results. Conclusions are given in the last section. Some

calculation details are presented in the Appendix.

2. Model

We consider an ensemble of N~Nd
0 cylindrically

symmetrical particles within a lattice, where d stands

for the dimensionality of the system. Neighbouring

sites are separated for a distance a0 in a cubic cell of

length L5N0a0. Local orientational ordering of a

particle at the ith site is given by a unit vector Si, to

which we henceforth refer as the ‘director’. We

further set at randomly chosen sites of concentration

p cylindrically symmetric quenched impurities enfor-

cing orientational ordering along ei. The orientations

of impurities were randomly chosen without any

preferred global orientation. We also imposed an

homogeneous external (e.g. electric or magnetic)

ordering field B5BeB, which enforces orientational

ordering along eB. We considered systems exhibiting

the so-called head-to-tail invariance, where ¡Si

orientations are equivalent. This is characteristic for

most LC molecules (where several structural details
are averaged out via relatively fast molecular rota-

tions) or nanotubes. With this in mind, we expressed

the interaction energy of the system as (7, 19, 20)

W~{
J

2

X

i, j

Si
:Sj

� �2

{
X

i

wi Si
:eið Þ2{B2

X

i

Si
:eBð Þ2:

ð1Þ

Here, J.0 describes the ordering interaction among

neighbouring molecules tending to orient directors

parallel or antiparallel. The sum over indices i runs

over all the particles, and the indices j run over the

first neighbours of the ith particle. At randomly
chosen sites of concentration p, we placed impurities

which are coupled with surrounding directors by the

random anisotropy-type interaction (21) of anchoring

strength wi5w.0. At the remaining sites, we set

wi50. Our interest was to find the main structural

characteristic of Si patterns as a function of p, w and

a history of such systems.

We described ordering in the three dimensional

(d53) Cartesian coordinate frame (x, y, z), whose

axes point along unit vectors ex, ey and ez,
respectively. The external field is oriented along the

x-axis, i.e. eB5ex. We considered behaviour in two

and three dimensions, to which we henceforth refer to

as the 2D and 3D model, respectively. In the 2D case,

where directors are constrained to the (x, y) plane, we

parameterise Si as

Si~ex cos hizey sin hi: ð2Þ

In the 3D model we parameterise unit vectors Si as

Si~exS ið Þ
x zeyS ið Þ

y zezS ið Þ
z : ð3Þ

For latter convenience we scale quantities in

Equation (1) with respect to J: ~WW~W=J, ~wwi~wi=J,
~BB~B

� ffiffiffi
J
p

. We henceforth omit the tildes.

In the 2D model the total energy W of the

configuration N~N2
0 directors is minimised with

respect to the angles hi, yielding the set of N

equilibrium equations. In the 3D model we minimise

W over S
ið Þ

x , S
ið Þ

y , S ið Þ
z taking into account the

constraint S
ið Þ2

x zS
ið Þ2

y zS ið Þ2
z ~1 (i.e. |Si|51).

Therefore, we neglect the role of thermal fluctuations
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and consider configurations at zero temperature. In
case of nematic ordering in LCs such an assumption is

sensible deep in the nematic phase (i.e. well below the

isotropic-nematic LC phase transition temperature).

The equilibrium equations and calculation details

are summarised in Appendix 1. At cell boundaries, we
imposed the periodic boundary conditions.

In simulations we either originated from ran-

domly distributed orientations of directors, or from

homogeneously aligned samples along a symmetry
breaking direction. In the latter case, the directors are

initially homogeneously aligned along ex. We hence-

forth refer to these cases as the i) random and ii)

homogeneous case, respectively. The random case

can be experimentally realised by quenching the

system from the isotropic phase to the ordered phase

without an external field (i.e. B50). This can be

achieved either via a sudden decrease of temperature
or sudden increase of pressure. The homogeneous

case can be realised by applying first a strong

homogeneous external field B along a symmetry

breaking direction. After a well enough alignment is

achieved, the field is switched off.

In order to diminish the influence of statistical

variations we carried out several simulations (typi-

cally Nrep,10) for a given set of parameters (i.e. w, p

and a chosen initial condition).

From obtained configurations of directors we
calculated the orientational correlation function G(r).

It measures orientational correlation of directors as a

function of their mutual separation r. We define it as

G rð Þ~S2 Si
:Sj

� �2
{1T, ð4Þ

G rð Þ~ 1

2
S3 Si

:Sj

� �2
{1T ð5Þ

in 2D (Equation (4)) and 3D (Equation (5)) space.

The brackets <…> denote the average over all lattice

sites that are separated for a distance r. If the

directors are completely correlated (i.e. homoge-

neously aligned along a symmetry breaking direc-

tion), it follows G(r)51. On the other hand, G(r)50
reflects completely uncorrelated directors. Since each

director is parallel with itself, it holds that G(0)51.

The correlation function is a decreasing function of

the distance r. We performed several tests to verify

the isotropic character of G(r), i.e. G(r)5G(r).

In order to obtain structural details from a

calculated G(r) dependence we fit it with the ansatz

G rð Þ~ 1{sð Þe{ r=jð Þmzs, ð6Þ

where the j, m, and s are adjustable parameters. In

simulations distances are scaled with respect to a0

(the nearest neighbour distance). The quantity j
estimates the average domain length (the coherence

length) of the system. Over this length the directors

are relatively well correlated. The distribution width

of j values is measured by m. Dominance of a single

coherence length in the system is signalled by m,1. A
magnitude and system size dependence of s reveals

the degree of ordering within the system (22). The

case s50 indicates the SRO. A finite value of s reveals

either the long range order (LRO) or QLRO. To

distinguish between these two cases a finite size

analysis s(N0) must be carried out. If s(N0) saturates

at a finite value the system exhibits LRO. If s(N0)

dependence exhibits algebraic dependence on N0 the
system possesses QLRO (5).

3. Results

We studied the structure of systems as a function of
impurity site-occupation probability P, anchoring

strength w between directors, external field strength B

and history of the system. In the first subsection we

consider the percolation properties of impurities in

2D and 3D space. In the second part we analyse

structural characteristics as various parameters are

varied above and below the percolation threshold.

This is followed by an analysis of external ordering
field-induced memory effects.

3.1. Percolation

It is expected that systems might show qualitatively

different behaviour above and below the percolation

threshold p5pc of impurities. For this reason we first

analysed the percolation behaviour of 2D and 3D

systems for typical cell dimensions implemented in

our simulations.

On increasing the concentration p of impurities a

percolation threshold is reached at p5pc. This is well
manifested in the P(p) dependence shown in Figure 1,

where P stands for the probability that there exists a

connected path of impurity sites between the bottom

and upper (or left and right) side of the simulation cell.

In the thermodynamic limit NR‘ the P(p) dependence

displays a phase transition type of behaviour, where P

plays the role of order parameter, i.e. P(p.pc).0 and

P(p,pc)50. For a finite simulation cell a pretransi-
tional tail appears below pc, and at p,pc the P(p)

steepness decreases with decreasing N. For 2D and 3D

cases, the P(p) dependencies show qualitatively similar

behaviour, where pc(2D),0.59 and pc(3D),0.30. A

typical percolated pattern in 2D is shown in Figure 2.

In simulations we use large enough values of N0, so

that finite size effects are negligible.
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3.2. Structural properties
In Figure 3 typical correlation functions G(r) for

p,pc and p.pc are plotted for the random and

homogeneous initial conditions. Both 2D

(Figure 3(a)) and 3D (Figure 3(b)) cells were

studied. It can be seen that in the random case

correlations vanish for r&j (i.e. s50), which is

characteristic for SRO. On the contrary G(r) depen-

dencies obtained from the homogeneous initial

condition yield s.0.

More structural details as p is varied for a relatively

weak anchoring (w51) are given in Figure 4 for 2D

and 3D systems. By fitting simulation results with

Equation (6), we obtained j(p), m(p) and s(p) depen-
dencies that are shown in Figure 4. One of the key

results of the study is that values of j strongly depend

(Figure 4(a)) on the history of systems for a weak

enough anchoring strength w. A typical domain size is

larger if one originates from the homogeneous initial

configuration. We obtained a scaling relation between

j and p, which is again history dependent. We obtain

j3p20.533¡0.003 (2D), j3p20.92¡0.03 (3D) for the
homogeneous case and j3p20.359¡0.005 (2D),

j3p20.95¡0.02 (3D) for the random case.

Information on the distribution of domain
coherence lengths about their mean value j is given

in Figure 4(b) where m(p) is plotted. For the

homogeneous case we obtained m,1.18 (2D),

m,0.95 (3D), and for the random case m,1.39

(2D), m,1.17 (3D). A larger value of m for the

random case signals broader distribution of domain

coherence length values in comparison with the

homogeneous case. The simulations did not reveal
any systematic changes in m as p is varied. Note that

values of m are strongly scattered because structural

details of G(r) are relatively weakly m-dependent.

In Figure 4(c) s(p) is plotted. In the random case we
obtained s50 for any p. Therefore, if starting from

isotropically distributed orientations of Si, then final

configurations exhibit SRO. In the homogeneous case s

gradually decreased with p, but remained finite for the

chosen anchoring strength (w51 for 2D and w53 for

3D systems).

Finite size analysis for two concentrations was

carried out, which is shown in Figure 5. It can be seen

that s(N0) dependencies saturate at a finite value of s,

which is a signature of LRO. We carried out

simulations up to values N05400 for d52 and
N05140 for d53.

Note that for larger anchoring values LRO order

for structures obtained from the homogeneous initial
configuration can be replaced by QLRO or even SRO.

In order to demonstrate that we studied structural

changes on increasing w starting from the weak

anchoring regime w51. In Figure 6, s(p) is plotted for

different anchoring strengths w for the homogeneous

case. It can be seen that a SRO can be obtained above a

certain threshold value of w above a critical value pw of

Figure 1. The percolation probability P as a function of p
and system size N~Nd

0 for d52 and d53. For a finite value
of N the percolation threshold (p5pc) is defined as the point
where P50.5. For d52 and d53 we obtain pc,0.59 and
pc,0.30, respectively, roughly irrespective of the system
size. (D) N0560; (#) N0580; (m) N05150; (N) N05260.

Figure 2. A schematic view of a 2D simulation cell with
N0510, where the darker areas in the lattice represent areas
occupied by impurities. Dashed line shows a possible
percolation path.
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impurity concentration. The value of pw decreases with

increasing w. For example, for w55 and w5‘ the SRO

is realised above pw,0.8 and pw,0.6, respectively.

Note that apparent changes on crossing the

percolation threshold on increasing p were noticed.

3.3. Field induced memory effects

We further analysed how the domain-type ordering

could be manipulated with external magnetic or

electric ordering field. For this purpose we originated

from the random initial configuration. We then

applied an external field of strength B and calculated

the configuration for different concentrations of

impurities. Then the field was switched off and the

configuration calculated again, to which we hence-

forth refer as the ‘switch-off configuration’. The

corresponding calculated s and j behaviour is shown

in Figures 7 and 8 for 2D (a) and 3D (b) space.

Figures 3. G(r) for p.pc and p,pc for the homogeneous and random case, B50. (a) d52, w51, pc,0.59, N05260. (N) p50.3,
homogeneous; (m) p50.7, homogeneous; (#) p50.3, random; (D) p50.7, random. (b) d53, w53, pc,0.30, N0580. (N)
p50.2, homogeneous; (m) p50.7, homogeneous; (#) p50.2, random; (D) p50.7, random.

Figures 4. Structural characteristics as p is varied for B50, w51 for 2D and w53 for 3D system. (a) j(p), (b) m(p), (c) s(p).
(N) homogeneous, 2D; (#) random, 2D; (m) homogeneous, 3D; (D) random, 3D. Lines denote the fits.
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Dashed lines mark the values of observables in the

presence of a field of strength B, while full lines mark

values after the field was switched off. From Figure 7

it can be seen that the presence of external field

develops QLRO or LRO (time-consuming finite size

analysis to distinguish between the two cases was not

carried out). This range of ordering remained as the

field was switched off, although the correlation

strength was reduced. Note that above a certain field

strength the degree of ordering in the switch-off

configuration is saturated, i.e. becomes independent

of B. Both 2D and 3D cases showed qualitatively

similar behaviour for all concentrations studied (i.e.

for p g [0.25, 0.75]).

The corresponding changes in j are shown in

Figure 8. With increasing B the j values for samples

with different p decrease and converge to the same

value, which is equal to the external field coherence

length. In the switched-off configuration the average

domain coherence length increases and again for a

large enough value of B saturates at a fixed value.

4. Conclusions

We studied the typical domain size j and configura-

tion character of a randomly perturbed system

exhibiting continuous symmetry breaking. As a

model system we used rod-like objects within a cubic

lattice interacting via a Lebwohl–Lasher-type inter-

action. The structure of the system is described in

terms of the director field Si, where the unit vector S
exhibits head-to-tile invariance. An example of such

systems represents LC molecules or nanotubes. We

further introduced impurities of concentration p,

which impose the so-called random anisotropy field

Figures 5. Finite size analysis s(N0) for p,pc and p.pc for the homogeneous case; B50 (a) w51 for the 2D system, (m) p50.3;
(N) p50.7 and (b) w53 for the 3D system, (D) p50.2; (#) p50.7. Lines denote average values.

Figure 6. s(p) for different anchoring strengths w for the
homogeneous 2D case, N05250.
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disorder to directors. We studied the domain-type

pattern of molecules as a function of p, anchoring

strength w between a neighbouring director and

impurity, and history of samples. In simulations we

quenched the directors either from the random or

homogeneous initial configuration.

Our results indicated that a history of system

strongly influences: i) the average domain coherence

Figure 7. s(B) for (a) d52, w52, N05250 and (b) d53, w54, N0560; random case. Dashed curves: configurations calculated
in the presence of external field B. Full curves: configurations calculated after the field was switched off.

Figure 8. j(B) for (a) d52, w52, N05250 and (b) d53, w54, N0560; random case. Dashed curves: configurations calculated
in the presence of external field B. Full curves: configurations calculated after the field was switched off.
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length; and ii) the range of ordering in the system. In

the random case the obtained order is always short

ranged. On the contrary, in the homogeneous case,

SRO is obtained only for strong enough anchoring

and large enough concentration p. In other cases, the

ordering is either QLRO or LRO. For example, we
obtained LRO for w51 for all concentrations of

impurities. We did not observe any apparent changes

above and below the threshold. We further studied

memory effects for the random initial configuration.

With increasing external ordering field B either

QLRO or LRO is realised. This ordering is preserved

even if the field is switched off. In addition the

average coherence length j is larger in comparison to
the ‘virgin’ configuration which was not exposed to

B. The degree of remanent global ordering in the

switch-off configuration becomes saturated for a

large enough value of B. Therefore, one can control

the degree of global ordering and average domain

coherence size by temporarily exposing a system to an

external ordering field. Our simulations further

showed that in such cases 2D and 3D systems exhibit
qualitatively similar behaviour.
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Appendix 1. Numerical approach

2D case.

The unit director field in the two-dimensional (2D)

model is characterised by angles hij with respect to the

x-axis:

Sij~ex cos hijzey sin hij , ðA1Þ

where 1(i(N0 and 1(j(N0. The director is

coupled to its four nearest neighbours. In addition

it may be influenced by an impurity at the same site

and by the homogeneous external field B5Bex. We

further scale the total interaction energy W with

respect to the coupling constant J. It follows that

~WW~
W

J

~{
1

2

X

i, j

cos2 hiz1, j{hij

� �

zcos2 hi{1, j{hij

� �

zcos2 hi, jz1{hij

� �

zcos2 hi, j{1{hij

� �

0

BBBBB@

1

CCCCCA

{~ww
X

i, j

pij cos2 h
ranð Þ

ij {hij

� �
{~BB2

X

i, j

cos2 hij:

ðA2Þ

Here ~ww~w=J, ~BB~B
� ffiffiffi

J
p

, and we henceforth skip the

tildes. The angles h
ranð Þ

ij in the w-term are random

preferential angles at the sites with impurities

calculated via the random-number generator. The

presence/absence of an impurity in each cell is also

determined by the random-number generator.

The coefficient pij takes the value 1 or 0, denoting

the presence or absence of an impurity at the ijth site.

The total interaction energy is minimised with respect

to all N2
0 angles hij and the corresponding equilibrium

equations are solved numerically. Periodic boundary

conditions have been adopted. The director at the right

boundary SN0j

� �
feels the director at the opposite face

(S1j) as its right nearest neighbour, and similarly for

other boundaries. In order to diminish the influence of

statistical variations we repeat several (Nrep,10 or
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more) times the initial setup of random impurities and

director relaxation followed by averaging the corre-

sponding correlation functions.

3D case.

The three-dimensional (3D) system consists of a

lattice of N06N06N0 sites with unit directors

Sijk~exS ijkð Þ
x zeyS ijkð Þ

y zezS
ijkð Þ

z : ðA3Þ

In contrast to the 2D problem, we found that the use
of conventional polar angles to characterise the

director field results in some troubles and incon-

sistencies of the numerical relaxation method, such as

convergence problems, and numerical preference of

one coordinate axis, although the system should

behave isotropically. In order to circumvent such

problems direct mathematical operations on

Cartesian director components have been performed.
We express the total interaction energy functional

as W~
P

ijk

Wijk where the term Wijk consists of three

parts:

Wijk~{
1

2

X

i’

Sijk
:Si’

� �2
{wpijk Sijk

:eijk
ranð Þ

� �2

{B2 Sijk
:ex

� �2
:

ðA4Þ

The total interaction energy is normalised as in the

2D case by setting J51. The indices i9, j9, k9 run over
the first neighbours of the point described by the

indices i, j, k. The quantity pijk in the second term is 1

if the site contains an impurity, and 0 otherwise, while

the unit vector e
ranð Þ

ijk describes the random preferential

orientation enforced by the impurity at the site

labelled by the indices i, j, k.

The equilibrium director configuration is

obtained by minimising the total interaction energy

with respect to all the directors by taking into

account the normalisation condition S2
ijk~1. The

resulting potential to be mimimised reads

W �~
P

ijk

Wijk
�,where

Wijk
�~lijk Sijk

2{1
� �

zWijk, ðA5Þ

and lijk are Lagrange multipliers. We minimise the

potential W* and obtain the following set of N3
0

equations which are solved numerically:

X

i’

g Sijk, Si’
� �

zwpijkg Sijk, e
ranð Þ

ijk

� �

zB2g Sijk, ex

� �
~0,

ðA6Þ

where the vector function g is defined as

g v1, v2ð Þ~ v1
:v2ð Þ v2{ v1

:v2ð Þv1½ �: ðA7Þ

The system of Equations (A6) is solved by the

relaxation method which has been proved fast and

reliable. Other aspects, for example, impurities setup,

initial director configuration, boundary condition,

etc., have been considered similarly as in the 2D case.

Of course, instead of using the orientational angles

hij, Equations (A6) may be directly applied to the 2D

problem simply by reducing the dimensionality by 1.

Such tests showed the consistency of both approaches

in 2D. Note that similar behaviour was observed in

random magnets.
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